Preexisting Autoantibodies Predict Efficacy of Oral Insulin to Cure Autoimmune Diabetes in Combination With Anti-CD3
نویسندگان
چکیده
We have previously developed a combination therapy (CT) using anti-CD3 monoclonal antibodies together with islet-(auto)antigen immunizations that can more efficiently reverse type 1 diabetes (T1D) than either entity alone. However, clinical translation of antigen-specific therapies in general is hampered by the lack of biomarkers that could be used to optimize the modalities of antigen delivery and to predict responders from nonresponders. To support the rapid identification of candidate biomarkers, we systematically evaluated multiple variables in a mathematical disease model. The in silico predictions were validated by subsequent laboratory data in NOD mice with T1D that received anti-CD3/oral insulin CT. Our study shows that higher anti-insulin autoantibody levels at diagnosis can distinguish responders and nonresponders among recipients of CT exquisitely well. In addition, early posttreatment changes in proinflammatory cytokines were indicative of long-term remission. Coadministration of oral insulin improved and prolonged the therapeutic efficacy of anti-CD3 therapy, and long-term protection was achieved by maintaining elevated insulin-specific regulatory T cell numbers that efficiently lowered diabetogenic effector memory T cells. Our validation of preexisting autoantibodies as biomarkers to distinguish future responders from nonresponders among recipients of oral insulin provides a compelling and mechanistic rationale to more rapidly translate anti-CD3/oral insulin CT for human T1D.
منابع مشابه
Preexisting Insulin Autoantibodies Predict Efficacy of Otelixizumab in Preserving Residual β-Cell Function in Recent-Onset Type 1 Diabetes
OBJECTIVE Immune intervention trials in recent-onset type 1 diabetes would benefit from biomarkers associated with good therapeutic response. In the previously reported randomized placebo-controlled anti-CD3 study (otelixizumab; GlaxoSmithKline), we tested the hypothesis that specific diabetes autoantibodies might serve this purpose. RESEARCH DESIGN AND METHODS In the included patients (n = 4...
متن کاملCombination Treatment With Anti-CD20 and Oral Anti-CD3 Prevents and Reverses Autoimmune Diabetes
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease, although B cells also play an important role in T1D development. Both T cell- and B cell-directed immunotherapies have shown efficacy in the prevention and reversal of T1D. However, whether the combined strategy of targeting both T and B cells could further improve therapeutic efficacy remains to be explored. We show that combined t...
متن کاملAnti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs.
Safe induction of autoantigen-specific long-term tolerance is the "holy grail" for the treatment of autoimmune diseases. In animal models of type 1 diabetes, oral or i.n. immunization with islet antigens induces Tregs that are capable of bystander suppression. However, such interventions are only effective early in the prediabetic phase. Here, we demonstrate that a novel combination treatment w...
متن کاملTransient B-Cell Depletion with Anti-CD20 in Combination with Proinsulin DNA Vaccine or Oral Insulin: Immunologic Effects and Efficacy in NOD Mice
A recent type 1 diabetes (T1D) clinical trial of rituximab (a B cell-depleting anti-CD20 antibody) achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin) with anti-CD3 antibody (a T cell-directed immunomodulator) o...
متن کاملInhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody.
Anti-CD3 monoclonal antibody (mAb) has been shown to induce tolerance and to be an effective treatment for diabetes both in animal models and in human trials. We have shown that anti-CD3 mAb given orally is biologically active in the gut and suppresses experimental autoimmune encephalitis by the induction of a regulatory T-cell that expresses latency-associated peptide (LAP) on its surface. In ...
متن کامل